
Mobile Robotics I – Obstacle Avoidance with Ultrasonic Sensing

Mobile Robotics I: Lab 5
Obstacle Avoidance with Ultrasonic Sensing

CEENBoT™ Mobile Robotics Platform Laboratory Series
CEENBoT v2.21 – '324 Platform

Alisa N Gilmore, P.E., Instructor, Course & Lab Developer

The Peter Kiewit Institute of Information Science & Technology
Department of Computer & Electronics Engineering

University of Nebraska-Lincoln (Omaha Campus)

Rev 1.01

1

Mobile Robotics I – Obstacle Avoidance with Ultrasonic Sensing

Purpose

In this lab, you will add another exteroceptive sensor to your robot, an ultrasonic ranging sensor, mounted
on a DC servo motor. You will learn to trigger and gather distance data, explore the limitations of the
sensing technology, and use the ultrasonic sensor to create an obstacle avoidance routine for the
CEENBoT. You will incorporate the SONAR_AVOID behavior into your existing behavior-based control
program structure and demonstrate the operation of all behaviors created using bbc_skeleton.c from Lab
4, Part 2.

Lab Objectives

By following the directions in this lab, you are expected to achieve the following:

• Experiment with the integration and operation of ultrasonic sensing technology by incorporating a
ultrasonic sensor onto the CEENBoT. Perform field tests to discover the range and limitations of
this sensor technology.

• Develop modular C code to trigger and condition the data produced by the ultrasonic sensor that
will allow you to detect obstacles at some distance in front of the CEENBoT. Compare and
contrast the use of the ultrasonic sensor to the IR sensor.

• Create a SONAR_AVOID behavior and add it to your behavior-based control structure in which
you will have a total of 4 behaviors with multitasking and arbitration.

• Demonstrate the operation of all 4 behaviors created thus far, including: IR_AVOID,
SONAR_AVOID, LIGHT_FOLLOW, and CRUISE, working in unions with a given set of arbitration
priorities.

• Get to know the STOPWATCH, and USONIC subsystem modules of the CEENBoT API along
with how to implement 'pin-change' interrupts using API functions.

Requirements

Preliminary Readings

• Information about ultrasonic sensors can be reviewed in the Mataric and Jones texts.

• Familiarize yourself with the operation of the Parallax PING))) ™ Ultrasonic Sensor by reviewing
the datasheet.

• Read the following chapters in the CEENBoT-API: Programmer's Reference manual (Rev 1.05)
for relevant information about how to utilize API functions to perform the tasks required in this
laboratory exercise:

Chapter 14: The USONIC subsystem module – to learn how to use the Parallax ™
Ultrasonic Sensor the 'easy' way.

Note: The Programmer's Reference is now up to Rev 1.05 – please, make sure that you have
downloaded the latest PDF.

2

Mobile Robotics I – Obstacle Avoidance with Ultrasonic Sensing

Required Equipment

• CEENBoT, platform '324 v2.21.
• Means to program your CEENBoT. (i.e., USB or Serial ISP programmer).

Background

The Parallax PING))) Ultrasonic Distance Sensor

For this laboratory exercise you will be using the Parallax PING))) Ultrasonic Distance Sensor (#28015 –
pictured above on the left) and will assemble and attach it using the mounting bracket and screws onto
the RC servo (pictured above on the right) in preparation for future upcoming labs. For this laboratory
exercise, however, you will focus only on assembling the unit, and using the ultrasonic sensor alone,
mounted on the CEENBoT so that it faces forward.

Compared to the IR sensor you have been working with thus far, the ultrasonic sensor possess notable
differences. First, the detection range of the ultrasonic sensor is larger – it will detect objects at a
distance anywhere between 2cm (~0.8in) up to 3 meters (3.3 yards). Second, unlike the IR sensors
which are basic 'ON/OFF' sensor devices (object is either blocking or not blocking), the ultrasonic
provides gives information that can be used to calculate the distance to target – opening up all sorts of
creative possibilities. However, unlike the IR sensor, the ultrasonic device is also subject to specular
reflection and will not accurately detect objects at angles of 45-degrees or less from the forward direction
of the robot. Additionally, unlike the line-of-sight IR sensors, the ultrasonic ping emitted by the sensor is
a 'conical' beam shape with a width between 50 to 60-degrees. (What other differences can you observe
between the sensors?)

3

Mobile Robotics I – Obstacle Avoidance with Ultrasonic Sensing

Theory of Operation

The operation of the Parallax PING))) Ultrasonic Sensor is outlined in its datasheet. Consult this
document for operating details of the unit.

The Parallax ultrasonic sensor is a 3-pin unit with connections for power, ground and a digital I/O pin used
to both 'trigger' the device and indicate echo return. Upon power-up of the unit, the digital I/O pin is
configured as an INPUT. In the INPUT stage, the sensor waits for a 'triggering' signal from a controlling
device (such as an MCU digital I/O pin) to tell it when to emit an 'ultrasonic ping'.

As soon as the sensor detects a triggering signal, it sends an ultrasonic ping, and immediately switches
the I/O pin from an INPUT to an OUTPUT. This pin then goes HIGH to indicate the sensor has fired the
ultrasonic ping. This pulse will remain HIGH until the sensor detects the ping 'echo' back to the device.
At the point of echo reception, the signal will return to a LOW, and switch to INPUT mode, waiting for the
next 'trigger'. The scenarios of the ultrasonic sensor's operation are depicted on the next page.

As soon as the ultrasonic sensor is triggered using a digital I/O pin (on the MCU-side), you must
immediately switch or 'reconfigure' this same digital I/O pin from OUTPUT to INPUT in order to catch the
beginning (LOW-to-HIGH transition) of the pulse and the end (HIGH-to-LOW) emitted from the PING)))
device.

Note: The preceding discussion is not meant to be taken as a comprehensive detailed
operation of the Parallax PING))) Ultrasonic Sensor – PLEASE refer to the datasheet for pulse
and timing specifications for details.

4

Mobile Robotics I – Obstacle Avoidance with Ultrasonic Sensing

There are several ways in which you can accomplish this task – some 'pointers' are given over the next
page or so. However, the key is that the 'pulse-width' (measured in units of time) is measured to
determine the time between when the 'ping' ultrasonic wave was sent and echoed back in order to
compute the distance-to-target.

Computing the Distance-to-Target

To measure the distance-to-target you'll use the following generalized formula:

d=1
2
⋅v⋅t

where d is the distance, v is the rate or speed, and t is the time in seconds. For our purposes, we will use
the speed of sound in air, which is 344.8 m/s (or 34480 cm/s – since we want distances in units of 'cm').
Thus, we have the following:

d=1
2
⋅34480⋅t = 17240⋅t

however, t is still in units of seconds which is much too large, since the pulse emitted by the sensor spans
in units of micro-seconds, so to specify t in units of micro-seconds we multiply the above by 1x10-6, and
thus, arrive at the following:

d cm = 0.01724⋅t s

Keep in mind that the reason we multiply by ½ is because we want the distance from 'sensor-to-target' –
we don't want the distance from 'sensor-to-target and back'.

CEENBoT-API Features You May Find Useful

You can achieve what is needed for this exercise by letting the CEENBoT-API handle the Ultrasonic
sensor for you by invoking the USONIC subsystem module which was specifically written to make use of
the Parallax PING))) Ultrasonic Sensor. Here you would only need to start the STOPWATCH subsystem
module, but you wouldn't have to interact with it, since USONIC will take care of the rest. If you choose
this route, the SIG pin on the Ultrasonic Sensor must be attached to I/O pin PA4, which is pin 2 on
Header J3 (there is a table further down in this document).

Using the USONIC Subsystem Module

The USONIC subsystem module in the CEENBoT-API was specifically written to control the Parallax
PING))) Ultrasonic Sensor. This module uses the STOPWATCH subsystem module to measure the pulse-
width of the sensor in microseconds, and also sets up the pin-change interrupts to let the MCU know
when the 'SIG' pin on the sensor has changed. It completely facilitates using this sensor as everything is
handled for you. The following 'snippet' of code shows the typical usage:

5

Mobile Robotics I – Obstacle Avoidance with Ultrasonic Sensing

#include "capi324v221.h"

void CBOT_main(void)

{

 // Local variables that we'll be using:

 unsigned long int usonic_time_us; // Holds 'trip' time in micro-seconds.

 SWTIME usonic_time_ticks; // Holds 'ticks' from STOPWATCH.

 float distance_cm; // Holds the distance-to-target in 'cm'.

 // Open the needed modules:

 STOPWATCH_open(); // Must be opened FIRST (needed by USONIC).

 USONIC_open(); // Open the Ultrasonic module.

 LCD_open(); // Open the LCD subsystem module.

 // NOTE: Here we're going to measure ONCE -- but you would place this in

 // a loop of some kind to measure multiple times.

 // Ping ONCE and store 'ticks' elapsed from STOPWATCH in variable.

 usonic_time_ticks = USONIC_ping();

 // Convert from 'ticks' to 'us'. ** Note the TYPE-CASTING ***

 usonic_time_us = 10 * ((unsigned long int)(usonic_time_ticks));

 // Convert to 'cm' using d = 0.01724*t_us.

 distance_cm = 0.01724 * usonic_time_us;

 // Print the result to 3 decimal places for 'show'.

 LCD_printf("Dist = %.3f\n", distance_cm);

} // end CBOT_main()

So as you can see, only three principal functions are required – the first two only happen once, per say.
You open the STOPWATCH first, since the ultrasonic needs to use it internally to measure the pulse-width
from the ultrasonic sensor in units of microseconds. The STOPWATCH, however, returns time in units of
ticks, where each tick is worth 10us. This variable is stored in a variable of type SWTIME (for
STOPWATCH time), which essentially defaults to an unsigned short int (16-bits), in case you're curious.

Since each 'tick' is worth 10us, the next line down multiplies this value by 10 to obtain the time in units of
microseconds. However, since multiplying by 10 might result in overflow (beyond 16-bits), we have to
typecast to a LARGER storage type. Note that the variable usonic_time_us is of type unsigned long int
also to accommodate for this potentially larger result.

It shouldn't be too difficult for you to take the above code 'snippet' and expand on it so that you can
continuously monitor distances in real-time by implementing the above in some kind of loop.

Further information on the USONIC subsystem module (and also the STOPWATCH) can be found in the
CEENBoT-API: Programmer's Reference manual – make sure you read on that to understand what is
happening on the 'inside' – in particular the STOPWATCH, which could be useful for to you for other tasks.

6

Mobile Robotics I – Obstacle Avoidance with Ultrasonic Sensing

ROBOT PROGRAMMING

In this lab you will append your modified bbc_skeleton.c program so that at the end it will include a total of
4 behaviors. You will add to your existing IR-AVOID, CRUISE and LIGHT_FOLLOW behaviors, a
SONAR_AVOID behavior. You will also add ultrasonic sensor-data-gathering functionality to the program
using a modular function call format.

When you complete this lab, you will have a random wanderer robot that seamlessly avoids obstacles at
a distance and backs up from obstacles close up. When a high enough intensity light source appears, the
robot will follow it. You will demonstrate this functionality and have your program structured in a behavior-
based control structure in C with cooperative multitasking among behaviors and fixed priority arbitration.
(The arbitration priorities are given in the Directions section.)

Directions

Part I

1. Assemble the servo mounting bracket and the ultrasonic sensor, and install both on the front of the
CEENBoT. Next, wire the ultrasonic sensor as follows. The sensor has one I/O pin in addition to power
and ground wires. Connect these wires to the CEENBoT via Header J3. Pin connections are outlined
below for your reference:

MCU Pin Pin on J3
5V 19

GND 20

PA4 (for connecting to SIG) 2

Note: Please be mindful of the pin numbers and where you connect your wires!

Write code to trigger the ultrasonic pulse, wait, and listen for the return pulse (echo) and calculate a
distance based on the width of the return pulse. Recall that it will be necessary to reconfigure PA4 (SIG
above) from OUTPUT to INPUT between 'triggering events'. Decide on how often you will trigger the
sensor and create intelligence to manage your readings. A recommended way to do this is to create a C
function to gather ultrasonic sensor data and return readings to your program. This ensures modularity.

2. Test your sensor by positioning the sensor at 90-degrees from a wall at a known distance. Run your
ultrasonic program, and display your detected distance on the LCD. Check to see that your sensor
reading generated by your program is accurate. Do this for several distances: a small distance (~2in or
5cm), a medium distance (~12in or 30cm), and a larger distance (~24in or 60cm). Compare your actual
distances. For the 2nd to 3rd trials, verify that your time actually doubled. If your distances are off, check
your control code for correct operation. You may also need to tweak your distance calculation until
distance measured is accurate – keep in mind that the speed of sound in air is temperature dependent!

7

Mobile Robotics I – Obstacle Avoidance with Ultrasonic Sensing

3. Next, position your CEENBoT 12 inches from the wall at 90-degrees as shown in the previous figure.
Record the distance detected. Then, move the CEENBoT at smaller angles (as shown (2) and in (3) in
the previous figure) from the wall. Each time, record the distance detected. Do the values change? At
what angle does the sensor cease to detect the wall?

Part II

1. Append your modified bbc_skeleton.c program with the following:

a) Add the ultrasonic sensor-gathering function(s) you have developed to trigger the ultrasonic sensor
and return a distance.

b) Create a SONAR_AVOID behavior that will move the robot away from obstacles at some distance
away. The goal is to detect obstacles and move around them before they are encountered. This
SONAR_AVOID should not require the robot to back up, as with the IR_AVOID, but to seamlessly
move around obstacles detected in front of the robot. This is because the ultrasonic sensor can
detect obstacles farther away (recall the IR sensor has a detection range of 4 inches). This should
be designed as a servo behavior, not a ballistic one.

c) Add in priorities for the BBC arbitration scheme (highest to lowest as: IR_AVOID, SONAR_AVOID,
LIGHT_FOLLOW, CRUISE (EXPLORE). You should have the LIGHT_FOLLOW behavior already
created from Lab 4, Part 2. This means that the robot will cruise or explore, until it sees a light, which
it will follow, until the sonar detects something in the distance, or the IR sensor detects something in
close proximity.

2. Be prepared to demonstrate the modified bbc_skeleton.c program with the above 4 behaviors added. It is
strongly recommended that you provide some visual or audio indication of the active behavior or current
state while the program is running. This will not only help ensure your program works the way you expect
it to but also for demonstrating how it works. Options for visual or audio feedback of behavior include:

a) LED display of the current “state”.
b) Flashing LEDs based on “state”.
c) Playing different speaker frequencies based on “state”. (Note, this functionality is not a part of the

API, but it is possible to create a method to make this work with the on-board speaker).

8

Mobile Robotics I – Obstacle Avoidance with Ultrasonic Sensing

Questions to answer in the RESULTS section of your Report

• What hurdles did you have to overcome to get it to work?
• What did you observe about ultrasonic sensing technology? Include in a chart your tests results from

Part 1 of the ultrasonic ranging sensor's performance at 3 different distances and 3 angles.
• Give several comparisons and contrasts to your work with IR sensors.
• In Part 1, question 2, did you find it necessary to tweak your ultrasonic distance calculation based on

field tests? How so?
• In Part 2, discuss your process to append your modified bbc_skeleton.c program to achieve 4

behaviors working in unison and add the sensor gathering data functionality for the ultrasonic sensor.
.

9

Mobile Robotics I – Obstacle Avoidance with Ultrasonic Sensing

Deliverables

Demonstrations

You will demonstrate your robot's execution of these new capabilities during the designated class
meeting or lab time.

C-code

Include a printout of your CEENBoT program. You may include snippets of your code and embed them in
your lab report as you discuss how your program works, but a separate attachment of your entire source
code must be included as part of your report.

Lab Report

The lab report should include all of the following:

• Title Page – Include Course Number, Course Title, Instructor Name, Your Name, Lab Name, &
Due Date.

• Overview Section (a brief paragraph of what the lab was about, and the purpose behind it).
Please also make sure you touch upon the following as well:

1. Resources used: (human, text, online or otherwise).
2. Time invested in this project.
3. A high-level description of your robot and program.
4. If this was a team assignment, state how tasks were delegated and split up among you.
5. Known problems with your solution (e.g., the robot will not work on the carpet, or... it breaks if

you make it go further than 5 ft (for whatever reason), etc.)

• Background Section (discuss some of the theory addressed in this particular lab).

• Procedure – Briefly describe the lab procedures for each lab – what were you asked to do? What
did the process consist of? How did you approach it?

• Discuss your Source Code – Discuss and explain any relevant details behind the motivation
and manner in which you have written your source code. You can embed [small] portions on of
your code that are relevant to the discussion for clarity, but please ensure to keep a complete
copy of your source code as a separate attachment (see Source Code section below). You may
also have the reader refer to particular pages of your source code attachment instead.

• Results – Use this section to answer questions posted throughout your lab exercise. In
particular those given out in the 'Directions' section. In the 'Procedure' section, feel free to refer
the reader to this section for additional info – that is, there is no need to repeat information.

• Conclusion – Reiterate the objective of the lab, discuss what you have learned and any further
comments you might have.

• Source Code – Attach your C-program also.

10

Mobile Robotics I – Obstacle Avoidance with Ultrasonic Sensing

Grading

11

